Measurement Error in Monetary Aggregates: A Markov Switching Factor Approach
نویسندگان
چکیده
This paper compares the different dynamics of the simple sum monetary aggregates and the Divisia monetary aggregate indexes over time, over the business cycle, and across high and low inflation and interest rate phases. Although traditional comparisons of the series sometimes suggest that simple sum and Divisia monetary aggregates share similar dynamics, there are important differences during certain periods, such as around turning points. These differences cannot be evaluated by their average behavior. We use a factor model with regime switching. The model separates out the common movements underlying the monetary aggregate indexes, summarized in the dynamic factor, from individual variations in each individual series, captured by the idiosyncratic terms. The idiosyncratic terms and the measurement errors reveal where the monetary indexes differ. We find several new results. In general, the idiosyncratic terms for both the simple sum aggregates and the Divisia indexes display a business cycle pattern, especially since 1980. They generally rise around the end of high interest rate phases – a couple of quarters before the beginning of recessions – and fall during recessions to subsequently converge to their average in the beginning of expansions. We find that the major differences between the simple sum aggregates and Divisia indexes occur around the beginnings and ends of economic recessions, and during some high interest rate phases. We note the inferences’ policy relevance, which is particularly dramatic at the broadest (M3) level of aggregation. Indeed, as Belongia (1996) has observed in this regard, “measurement matters.”
منابع مشابه
Monetary Fundamental-Based Exchange Rate Model in Iran: Applying a MS-TVTP Approach
T he main purpose of this article is to analyze exchange rate behavior based on monetary fundamentals in the context of Iranian economy over the period 1990:2 to 2014:3. To do so, two monetary exchange rate models is investigated, the first by regarding interest rate differential as a monetary variable, and the second one regardless of interest rate differential as a monetary variabl...
متن کاملAsymmetric Effects of Monetary Policy and Business Cycles in Iran using Markov-switching Models
This paper investigates the asymmetric effects of monetary policy on economic growth over business cycles in Iran. Estimating the models using the Hamilton (1989) Markov-switching model and by employing the data for 1960-2012, the results well identify two regimes characterized as expansion and recession. Moreover, the results show that an expansionary monetary policy has a positive and statist...
متن کاملStudy on Gold as a Hedge or Safe Haven for the Stock Market by a Markov Switching Approach
Although gold is no longer a central cornerstone of the international monetary and financial system, it still attracts considerable attention from researchers and investors. Nowadays, many investors manage their risk with valuable assets such as gold. This paper examines the dynamic relationships between gold and stock markets in the Tehran Stock Exchange. We have applied the Markov switching m...
متن کاملNon-Linear Relationships Among Oil Price, Gold Price and Stock Market Returns in Iran: A Multivariate Regime-Switching Approach
In this paper, the effects of oil and gold prices on stock market index are investigated. We use a cointegrated vector autoregressive Markov-switching model to examine the nonlinear properties of these three variables during the period of January 2003 - December 2014. The Markov-switching vector-equilibrium-correction model with three regimes representing "deep recession", "mild recession" and ...
متن کاملThe Effect of Monetary Policy on Regime Changes of Financial Assets
The main objective of this study was to investigate the effect of monetary policy on changes in the price of financial assets (including foreign exchange, gold and stocks) in Iranian economy. In this regard, this paper answers whether monetary policy could lead to regime changes in asset markets. To answer this question, monthly data during the years 1995 to 2017 and a combination of Markov Swi...
متن کامل